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Experimental evidence of the Fankuchen effect for neutron diffraction by curved crystals is presented 
and discussed. The Fankuchen effect consists of a space condensation of neutrons (or X-rays) diffracted by 
an asymmetrically cut crystal. Theoretical considerations are presented on the Fankuchen effect in the 
case of ideal mosaic crystals, perfect crystals and ideal curved crystals. This analysis shows that mosaic 
crystals behave quite differently from perfect crystals. Whereas for perfect crystals the asymmetric cut is 
expected to induce a real gain in neutron current density, for mosaic crystals no gain is expected. Curved 
crystals are expected to behave in a similar way to perfect crystals. The experiments were carried out on 
chemically curved Si crystals. The neutron-diffraction characteristics of a symmetrically cut Si crystal 
and an asymmetrically cut Si crystal were compared. A gain in the neutron current density of a factor of 
4 was observed in the case of the asymmetric crystal. This value is in good agreement with the estimated 
theoretical value of 4.2. This fact could lead to interesting applications in the selection of monochromatic 
beams to be used in neutron diffractometry of small biological crystals. 

Introduction 

The first experiment on space condensation of X-rays 
due to asymmetric Bragg diffraction was performed 
by Fankuchen (1937) in connexion with measurements 
on tobacco mosaic virus. The principle of the con- 
densing effect, which consists of the diffraction of an 
X-ray beam of area $1 into a smaller area $2, is shown 
in Fig. 1 and will be discussed below in more detail. 

A more quantitative experiment of the same kind 
was performed by Evans, Hirsch & Kellar (1948), who 
reported peak reflectivities as a function of the asym- 
metry factor for calcite, quartz and fluorite crystals. 

This paper will present experimental, results con- 
cerning the Fankuchen effect in neutron diffraction by 
curved Si crystals. Some theoretical considerations 
will be given on the effects expected from ideal mosaic 
crystals, perfect crystals and ideal curved crystals, 
before the experimental data are presented and inter- 
preted. 

Theoretical considerations 
(a) Ideal mosaic crystals 

The propagation of Bragg-reflected neutrons by 
ideal mosaic crystals was treated extensively by Werner 
& Arrott (1965). They showed that for an infinitely 
large, incident neutron beam and an infinitely thick, 
non-absorbing mosaic crystal, the total neutron-dif- 
fracted power Pn can reach a maximum value: 

$1 

s 

Fig. 1. Schematic representation of condensing effect in asymmetric 
Bragg reflexion. 
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Pu=Po for 7o/Yu~ 1 (1) 

= )'_nn Po for 7o/7n > 1 (2) Pn Yo 

where Po is the incident neutron power at the given 
wavelength and Yo and 7n are defined by (see Fig. 1) 

7o = sin ~ (3) 
7n=sin ft. (4) 

On the other hand, from Fig. 1 it appears that the 
ratio $2/S~ of the two surfaces is equal to 7n/Yo. From 
the geometry, one could believe that the asymmetric 
cut induces a gain in the diffracted current density 
equal to the ratio Yo/Tu. However, from (2) it is apparent 
that the gain in the surface condensation is just com- 
pensated by the loss in the reflectivity, so that the cur- 
rent density in the diffracted neutron beam has the 
same value as in normal symmetric diffraction. On the 
other hand, the wavelength resolution A2/2 of the 
diffracted beam is given by 

A2 
2 - ( co t  0B)q (5) 

in both the symmetric and asymmetric Bragg reflexion, 
0B being the Bragg angle and 1/the mosaic spread. 

(b) Perfect crystals 
X-ray diffraction by perfect crystals is described by 

the dynamical theory reported by Zachariasen (1967) 
and others. Neutron diffraction by perfect crystals can, 
in practice, be described by the equations reported by 
Zachariasen (1967) for X-ray diffraction by non-ab- 
sorbing crystals, as was shown by Goldberger & Seitz 
(1947). Obviously, a proper insertion of neutron 
physical quantities is necessary. 

The dynamical diffraction profile of a perfect crystal 
can be expressed, as in Zachariasen (1967), in terms of 
the dimensionless units: y and A. y represents the 
angular orientation of the crystal, and A the thickness 
of the crystal. For neutrons, the relation between dy 
and the angular deviation A0 is 

2Fn (]YHI~I/2 
AO=v---~tanOa k,[~o[/ Ay (6) 

where Fn is the neutron structure factor, for the given 
reflexion, V~ the volume of the elementary cell and z 
the inverse of the interplanar distance. The relation be- 
tween A and the crystal thickness t is 

A= 2Fn sin OB 
( l~o~,n l )~ /zzv ~ t. (7) 

The neutron diffraction pattern produced by a perfect 
crystal in Bragg geometry is given for the most general 
case (Zachariasen, 1967, p. 124) by 

Pn 1 
r -  - (8) 

Po y 2 + ( l _ y 2 )  coth2 [AV(I_y2)]"  

For A > 1, the diffraction pattern reduces to the 
well-known Darwin curve, which has an angular region 
of total reflexion of width equal to 2y and an integrated 
reflecting power Rh in y scale equal to re. 

As the A and r definitions (7) and (8) are valid in the 
most general asymmetric Bragg case, it follows that for 
perfect crystals in the geometry shown in Fig. 1, 
Pn/Po = 1 for both 7o/Yn > 1 and 7o/7n < 1. Therefore, 
if the crystal has an orientation corresponding to the 
centre of the Darwin curve, the condensing effect is real. 

In practice, if one intends to use such a crystal as a 
monochromator, it is useful to compare the neutron 
intensity and the wavelength resolution with symmetric 
Bragg diffraction. In both symmetric and asymmetric 
Bragg diffraction, the reflectivity Pn/Po is equal to 1 
inside the total reflexion region of the Darwin curve. 
Then the ratio PA/Ps of the total neutron power dif- 
fracted from the primary beam of surface $1 for asym- 
metric (A) and symmetric (S) diffraction is given by the 
ratio of the corresponding wavelength resolution 
A2A/A2s. This ratio is obtained by replacing r/in (5) by 
the appropriate value for A 0 in (6). It is easy to see that 

P - T s - A ~ -  ~-o " (9) 

As the ratio between the surfaces SzA and Szs is 
given, for the same $1, by 

Sza =Yt'I (10) 
$2S ~0 ' 

if J is the diffracted neutron current density, then 

JA 7o 

Therefore, perfect crystals behave quite differently 
from ideal mosaic crystals. An asymmetric cut in a 
perfect crystal introduces a gain given by (11) in the 
neutron current density. Furthermore, the wavelength 
resolution is increased by the factor given in (9). 

In conclusion, the asymmetric perfect crystal acts as 
a condensing neutron lens. Therefore one expects that, 
as in a lens, the condensation of the flux in real space 
implies an increase of the angular divergence in such a 
way that the density in momentum space remains 
constant, in agreement with the Liouville theorem. In 
fact, there is an increase in the angular divergence, as 
discussed by Kohra & Kikuta (1968), who utilized the 
asymmetric cut in reversal conditions to obtain ex- 
tremely parallel X-ray beams. 

For a monochromatic beam, one obtains for the di- 
vergence of the secondary diffracted beam 03u the fol- 
lowing value: 

2o--030 . (12) 03H ~)U 

030 is the divergence of the primary accepted beam (i.e. 
the angular width of the Darwin curve). For values of 



362 THE FANKUCHEN EFFECT IN DIFFRACTION BY CURVED CRYSTALS 

70/7H of the order of 10, the value of OH remains lower 
than 1 minute and therefore is, in practice, negligible 
in comparison with the normal divergence of the inci- 
dent white neutron beams. 

(c) Ideal curved crystals 

The neutron diffraction by ideal curved crystals 
was considered by Klar & Rustichelli (1973), who ex- 
tended Taupin's (1964) X-ray dynamical theory. How- 
ever, Albertini, Boeuf, Cesini, Mazkedian, Melone & 
Rustichelli (1976) have recently developed a simple 
model to describe the neutron diffraction by curved 
crystals, which is in agreement with the calculations of 
Klar & Rustichelli (1973). The advantage of their model 
is to allow a simple physical understanding of the 
phenomenon. In Klar & Rustichelli (1973) and in 
Albertini et al. (1976), a quantity c related to the cur- 
vature of the crystal is defined as in Taupin (1964) to be 

dy 
c = d--- ~ . (13) 

From this definition, the following expression for c 
can be derived for a spherically curved crystal 

where 

n)'oV~ 2(b-1)El +bT~(1 +2k)] 
c=223F2 b~o (14) 

2* b= 7° , k - - -  
7n 2* + 2y* 

and O is the radius of curvature. (2* and #* are the well- 
known Lam6 coefficients.) 

In (13), y represents the deviation from the Bragg 
law at a certain depth A below the surface of the 
crystal. If y(0) is the deviation from the Bragg law at 
the surface of the crystal, then for a uniform curvature 

y(A)=y(O)+cA . (14) 

In these units c = 1 corresponds to the optimal cur- 
vature as discussed by Klar & Rustichelli (1973) and 
Albertini et al. (1976). From these two works it appears 
that, independently of asymmetry, for c < 1 the reflec- 
tivity r =  Pn/Po is equal to one, in a range Ay nearly 
equal to cA (for A >> 1): 

Aye-cA .  (15) 

This means that the reflectivity is equal to one within 
an angular range which is nearly equal to the difference 
in the deviation from the Bragg law between the en- 
trance surface and the back surface of the crystal. 
This angular range for a uniform spherical curvature 
is given in Taupin (1964) by 

W _ 2 ( b - 1 ) E l + b T ~ ( l + 2 k )  ] t 
b• 2 sin 20B" 

(16) 

If one replaces in (5) r/ with W, one obtains the 
wavelength resolution AA/2. 

The comparison will now be made between neutron 
diffraction by a symmetrically cut curved crystal with 
c=  1 and an asymmetrically cut curved crystal (as in 
Fig. 1) also with c =  1 (the radii of curvature of the two 
are not necessarily the same). Let us consider that the 
thicknesses of the two crystals are such that W, i.e. the 
wavelength resolution, is the same. As the reflectivity 
inside W is 1 in both cases, the integrated reflectivity 
R ° will be the same for both. As the ratio of the two 
surfaces is given by (10), the ratio of the diffracted cur- 
rent to neutron density will be 

Ja _ 7o (17) 
Js 7n 

Therefore, with regard to the Fankuchen effect, an 
ideally curved crystal behaves more like a perfect 
crystal than a mosaic crystal. However, comparing (17) 
with (11) it appears that the ratio JA/J s is different for 
the perfect crystals and the curved crystals. This fol- 
lows from the fact that for the perfect crystals there is 
an intrinsic difference in the resolution A2/2 between 
the symmetric and the asymmetric reflexion (9), while 
for the curved crystals the comparison is made be- 
tween a symmetric and an asymmetric reflexion with 
the same A2/2. 

Experimental  results and discussion 

The measurements were carried out with perfect Si 
crystals which were curved by a microscopical tech- 
nique described in Antonini, Corchia, Nicotera & Ru- 
stichelli (1972). A Si3N, film was chemically produced 
at high temperature on one face of a perfect Si crystal 
0"5 mm thick and 4 cm in diameter. By cooling the 
crystal, the difference in thermal expansion coefficient 
between Si and Si3N4 produces a uniform spherical 
curvature. 

According to the theoretical analysis in the previous 
section, in order to compare the diffraction properties 
of symmetrically and asymmetrically cut curved 
crystals, the geometrical parameters of the two crystals 
should be chosen suitably. The c values of both crystals 

(111)~ t ~ ~°~O'~'~°°"J~ slit 
cryst QI ~ sill 

__t,~ c°unter ~ D 

(a) (b) 

Fig. 2. (a) Experimental set-up. (b) Curved crystal with the impinging 
neutron beam. 
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must be equal to one. This implies that a proper choice 
of the radius of curvature ]-see (14)] is made for the 
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Fig. 3. Neutron diffraction pattern obtained at different beam width. 

Theoretical curve and experimental points for (a) symmetric and 
(b) asymmetric Bragg reflexion. 

chosen neutron wavelength at a given asymmetry 
factor 7o/7~ and a given reflexion. Furthermore, the 
wavelength resolutions A2/2 should be equal, which 
can be achieved by a proper choice of the crystal thick- 
nesses. 

The experiments were performed at a neutron wave- 
length 2=1.8  /~ corresponding to a Bragg angle 
0B= 16 °. The Si(111) reflexion was investigated. The 
asymmetric crystal was cut with the surface at 10 ° to 
the (111) plane which corresponds to a ratio 70/7H 
equal to 4-2. In this case, the radius of curvature cor- 
responding to c =  1 calculated according to (14) was 
Q = 12"5 m. In practice, the experiments were performed 
with an asymmetric crystal having a radius of curvature 
0 = 12 m and a thickness of 0"5 ram, corresponding to 
W=0"31' and A2/2=3 x 10 -4. The symmetric crystal 
with the same A2/2 value and the same c value (c= 1) 
would have a radius of curvature Q= 12 m and a thick- 
nes t=0-33 mm. However, for technical reasons, a 
crystal with a radius of curvature Q=20 m and a 
thickness t=0"5 mm was utilized. Except for a small 
loss of intensity due to a negligible increase in absorp- 
tion, the real symmetric crystal behaves like one with 
Q= 12 m and t=0 .30  mm. In fact, both conditions 
Q=20 m, t=0"5 mm and Q= 12 m, t =0"30 mm, lead to 
the same resolution A2/2 and to the same peak reflec- 
tivity, nearly equal to 100 %, because in both cases c is 
smaller than or equal to one. Therefore, the real sym- 
metric crystal behaves like the ideal crystal (Q = 12 m, 
t =0.33 ram) except for a slight difference in the A2/2. 

The first part of the experiment consisted in verifying 
the 100 % peak reflectivity of the symmetric and asym- 
metric crystals and comparing the corresponding 
A2/2. More precisely, the diffraction patterns of the 
two crystals were calculated with the model of Albertini 
et al. (1976) and are reported as dotted lines in Fig. 3. 
These two diffraction patterns will be called 'the in- 
trinsic diffraction patterns'. The experiments were per- 
formed at the D 13 diffractometer of the HFR Grenoble 
(Boeuf, Gobert  & Rustichelli, 1975). Fig. 2(a) shows the 
experimental set-up. A perfect Si crystal utilized in 
symmetric Bragg reflexion gives a monochromatic 
beam. The diffraction patterns and the absolute re- 
flectivities of both crystals were recorded. By using an 
infinitely narrow neutron monochromatic  beam, the 
intrinsic diffraction patterns depicted in Fig. 3(a) and 
(b) should be obtained experimentally. However, the 
size of the neutron beam width, as it appears from Fig. 
2(b), introduces a broadening of the diffraction pattern 
and a decrease in the peak reflectivity. The integrated 
reflecting power remains constant. In order to over- 
come this difficulty, several diffraction patterns for 
different neutron beam widths were recorded and an 
extrapolation procedure was used. The widths of the 
slit used to delimit the neutron beam were a = 5 ,  3-5, 
1-5, 1, 0"6 mm. As the neutron beam had a certain diver- 
gence, and the slit was positioned at 20 cm from the 
crystal, the actual neutron beam width on the crystal 
itself (a') was ,~ 0"2 mm larger than the slit width. 
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The theoretical neutron diffraction patterns for a 
finite beam width can be obtained from the model of 
Albertini et al. (1976) by a simple adaptation and are 
reported in Fig. 3(a) and (b) for the a ' =  1.2 and a'= 1.7 
mm beam widths, together with the corresponding ex- 
perimental points. The agreement is quite satisfactory. 

The data corresponding to the other neutron beam 
widths are presented in a more synthetic form in Fig. 4. 
In particular, the figure reports, for each neutron beam 
width, the experimentally observed full width at half 
maximum, the maximum reflectivity r = P~/Po and the 
integrated reflecting power R °, as well as the theoreti- 
cal predictions of the model for these three quantities, 
in both the symmetric and asymmetric Bragg reflex- 
ions. A satisfactory agreement appears between ex- 
perimental data and theoretical predictions. It can thus 
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Fig. 4. Neutron maximum reflectivity (r), neutron integrated reflec- 
tivity (R) and full width at half maximum (FWHM) of the diffrac- 
tion patterns as a function of the neutron beam width (a) for a 
symmetric Bragg reflexion and (b) for an asymmetric Bragg re- 
flexion. 

be foreseen that with an infinitely narrow neutron 
beam, one would obtain a similar agreement of the 
experimental results with the intrinsic diffraction pro- 
files for the two crystals. 

After that verification, the crystals were positioned 
in a neutron white beam (8 x 12 mm 2) at the Bragg 
angle corresponding to 2 = 1.8 A. A picture of the two 
diffracted beams is reported in Fig. 5. A horizontal scan 
of the counter in a direction perpendicular to the two 
diffracted beams was performed using a 1 x 1 mm 2 slit. 
The result of this scan is reported in Fig. 6. From Figs. 
5 and 6, the condensation effect due to the Fankuchen 
cut is evident. The value of the experimental ratio J.4/ds 
deduced from Fig. 6 is 4.0_+0.3, which is in good agree- 
ment with the 4-2 value expected from (17). These 
results may lead to useful applications of curved crystal 
monochromators in neutron diffractometry of very 
small (to 1 mm 3) biological substances. However, other 
facts, such as, for instance, the focusing effect due to the 
curvature of the crystals, must be considered in a prac- 
tical application. 

Conclusions 

The Fankuchen effect was observed in the neutron dif- 
fraction by curved Si crystals. This effect consists of a 
space condensation of the diffracted neutrons due to an 
asymmetric cut of the crystal which corresponds to an 
increase in the neutron current density equal to the 
asymmetry factor. The gain observed of 4"0_+ 0"3 agrees 
quite well with the theoretical value of 4.2 for the given 
geometry. A theoretical analysis of this effect is also 
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Fig. 5. Picture of the symmetrically and asymmetrically diffrac- 
ted beams. 
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reported for perfect and mosaic crystals. In particular 
it is shown, following Werner & Arrott (1965), that for 
mosaic crystals, contrary to that for perfect crystals, 
the condensation effect is compensated by a loss of 
reflectivity of the same factor. 

In conclusion, this experiment, on one hand, con- 
stitutes a verification of some predictions of the dyn- 
amical theory of neutron diffraction, and, on the other 
hand, opens interesting perspectives to increase the 
neutron intensities in the diffractometry of small 
biological samples. 
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For unitary, normalized and neutron structure factors the equation" 

0 = ~ A(h, m)F(m)F(h- m) 

with 
A(h,m) = F(m, fll l)F(h - m, fl12)F(h, f121flEE) - F(m, flE1)F(h - m, flE2)F(h, fl l lf112) 

is valid, where the F(m, fluv) are the form factors of arbitrary artificial density functions fluv, which are not 
more extensive than a sphere of diameter equal to the minimum atomic distance of the structure. 

Since the early days of X-ray crystallography many 
attempts have been made to find procedures for the 
formulation of structure-factor relations, because these 
can be used as determinantal relations for the un- 
known phases and hence for structure analysis by 
direct methods. 

A formalism to derive structure-factor equations, 
which are exactly valid for arbitrary crystals with 
known chemical content, was first developed by Woolf- 
son (1958) by generalizing the equation of Sayre (1952). 
The multiple sums of these equations, which make 
practical application difficult, disappear if one replaces 
in Woolfson's theory the generating mappings, QJ(x), 
j = 1,2,..., of the scattering density, p(x), by linear com- 
binations of Dvl~Dv20, v = 1,2,..., where Dr1 and Dv 2 
are differential operators (Rothbauer, 1975, 1976). 

In the following such a procedure is applied to a 
practical important degenerate case. 

The equation 

The electron density distribution, 0,(x),/2= 1,2,..., of 
many kinds of atoms differs by a factor, which may be 

assumed to be constant for the purposes of structure 
analysis. There are therefore many crystal structures, 
whose scattering density function: 

p q(u) 
e(x)= ~ ~ eu(x-xuv) (la) 

/~=I v=l 

can be written approximately in the form: 
p q(u) 

Q(X)= ~ ~ f ,  fl(X--X,~), (lb) 
/~=1 v=l 

where fl(x) is a function characteristic of the shape of 
the atoms of the structure, p equals the number of 
different kinds of atoms, f ,  and q(#) describe the scat- 
tering density and the number of atoms of kind /~, 
respectively, and x,~ denotes the position of the vth 
atom of the #th kind. 

If one introduces a distribution: 

p q(u) 
z(x)= ~ ~ f u 6 ( x -  xuv) (2) 

#=1 v=l 

with a scattering density concentrated at the points 
xuv, one can express Q as the convolution of • and fl: 


